Barisan Aretmatika adalah barisan bilangan yang tiap sukunya diperoleh dari suku sebelumnya dengan cara menambah atau mengurangi dengan suatu bilangan tetap.
Perhatikan baarisan U1, U2, U3, . . . . . .,Un-1, Un. Dari definisi di atas, diperoleh hubungan
sebagai berikut : U1 = a
U2 = U1 + b = a + b
U3 = U2 + b = a + b + b = a + 2b
U4 = U3 + b = a + 2b + b = a + 3b
..
Un = Un-1 + b = a + (n - 2)b + b = a + (n - 1)b
Un = a + (n – 1 )b
Dengan n = 1, 2, 3,..
Bilangan b adalah suatu bilangan tetap yang sering disebut dengan beda. Penentuan rumus
beda dapat di uraikan sebagai berikut :
U2 = U1 + b => b = U2 - U1
U3 = U2 + b => b = U3 - U2
U4 = U3 + b => b = U4 - U3
.
.
.
Un = Un-1 + b => b = Un - Un-1
Dengan melihat nili b, kita dapat menentukan barisan aritmetika itu naik atau turun.
Bila b ˃ 0 maka barisan aritmetika itu naik
Bila b ˂ 0 maka barisan aritmetika itu turun
Contoh:
Tentukan suku ke sepuluh ( U10 ) dari barisan aritmetika berikut ini dan tulis jenis barisan
aritmetika tersebut.
a. 1, 3, 5, 7,. . . .
b. 4, 2, 0, -2,. . .
Jawab :
Gunakan rumus beda untuk menentukan suku ke sepuluh ( U10 ) dari masing-masing barisan
aritmetika.
a. Barisan 1, 3, 5, 7 . . .
berdasarkan rumus Un = U1 + (n – 1) . b diperoleh ..
U1 = 1 U2 = 3 U3 = 5 b = U2 - U1 = 2 b = U3 - U2 = 2 b = U4 - U3 = 2
karena b = 2 > 0 barisan aritmetika merupakan barisan naik.
U10 = U1 (10 - 1) . b
U10 = 1 + 9 . 2 = 19
b. Barisan 4, 2, 0, -2, . .
U1 = 4 ; U2 = 2 ; U3 = 0 ; U4 = -2
b = U2 - U1 = - 2 ; b = U3 - U2 = -2 ; b = U4 - U3 = - 2
karena b = - 2 < 0 barisan aritmetika merupakan barisan turun, berdasarkan rumus
Un = U1 (n - 1) . b
U10 = 4 + (9 . (- 2) ) = - 14
Jadi, suku ke sepuluh barisan tersebut adalah -14
No comments:
Post a Comment